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A
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A1

A1-Li

C-C

D-D
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EZDESIT

FEA
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LTV

M

MMC
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Aerodynamic Preliminary Analysis

System

aluminum 2219

aluminum-lithium

carbon-carbon

diameter-depth (ratio)

ellipsoid

Engineering Analysis Language
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ellipsoid Taguchi matrix (for

27 exp.criments)

lunar transfer vehicle

moment load

metal matrix composites

N
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S

SEI

SMART

S-C
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t

AV

W

x,y

3-D

P

normal load

package for finite clement

modeling

Program to Optimize Simulated
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spheroid

Space Exploration Initiative
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Abstract

An aerobrake structural concept for a lunar transfer vehicle was
weight optimized through the use of the Taguchi design method, finite
element analyses, and element sizing routines. Six design parameters
were chosen to represent the aerobrake structural configuration. The
design parameters included honeycomb core thickness, diameter-depth
ratio, shape, material, number of concentric ring frames, and number of
radial frames. Each parameter was assigned three levels. The aerobrake
structural configuration with the minimum weight was _ percent less
than the average weight of all the remaining satisfactory experimental
configurations. In addition, the results of this study have served to
bolster the advocacy of the Taguchi method for aerospace vehicle design.
Both reduced analysis time and an optimized design demonstrated the
applicability of the Taguchi method to aerospace vehicle design.

1. Introduction

A lunar colony is one mission among many being
studied as part of the Space Exploration Initiative
(SEI). (See ref. 1.) The economical transportation of
materials and personnel from Earth to the Moon in
support of a lunar colony constitutes a major tech-
nical challenge. A method of minimizing the overall
transportation costs is through the use of efficient,
space-based, reusable lunar transfer vehicles (LTV's).
The first LTV's were those of the Apollo missions
and were ground based. For mission scenarios cur-
rently under consideration, LTV's supporting the lu-
nar colony would be space based, thus eliminating
recurring, low Earth-to-orbit launch costs. A space-
based, reusable LTV would reside at the Space Sta-
tion Freedom or a space platform and transfer pay-
loads between its docking residence and the Moon.

Lunar missions require large changes in velocity
(AV's) in order to transfer from the lunar return
orbit to the Earth parking orbit (ref. 2). These
types of maneuvers are referred to as orbit capture.
Two primary methods are used to achieve capture.
The current capture method is through the use of
propulsion (fig. 1) and has been used for all NASA
planetary missions to date. To attain the necessary
AV's for Earth orbit capture upon lunar return, a
large amount of propellant is needed and must be

carried for the entire trip (from Earth to the Moon
and back).

An aerobraked LTV (fig. 2) offers an alterna-
tive method by attaining the necessary AV through
an aerodynamic approach in which the need for a
propulsive capture burn at Earth perigee is elimi-
nated. An aerobrake grazes the atmosphere at Earth
(fig. 3) by utilizing drag to decrease velocity for cap-

Parking
orbit

AV achieved through
propulsive maneuver

(which places vehicle in
parking orbit)

/
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Figure 1. Propulsive capture.

ture. One class of aerobrakes are curved surfaces

(large enough to protect the spacecraft from hot
gases in the wake) that are shaped so as to provide
the necessary lift, drag, and controllability. The con-
cave side of the aerobrake is fitted with the space-
craft, and the convex side is the aerodynamic surface
upon which aerodynamic forces act to slow the vehi-
cle upon entry into the atmosphere.

A significant portion of all LTV's consist of pro-
pellant tanks (fig. 2). (See ref. 3.) By utilizing an
aerobraking device instead of a propulsive burn for
capture, a significant amount of propellants can be
saved. Figure 2 shows the difference in size and tank-
age between an LTV with and without an aerobrake.
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(b) All-propulsive LTV. B denotes two tanks (front
and back).

Figure 2. Lunar transfer vehicle configurations (ref. 4).
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Figure 3. Aerodynamic capture.

In figure 2(b) the aerobrake is replaced with a sig-
nificant amount of propellants and the size of the
LTV has increased. Studies show that the number

of shuttle launches to deliver the LTV to orbit can

be reduced from three to two when substituting an

aerobrake configuration for an all-propulsive config-

uration (ref. 4). Thus, if an aerobrake can be used to

aerodynamically achieve the necessary AV's, a sig-

nificant mass savings may be realized. An aerobrake
can be considered advantageous from a performance

standpoint only if the aerobrake mass is less than

the mass savings of the propellant and propulsion

system. Thus, the structural concept, material se-

lection, and other design features must be optimized
to produce a mininmm-weight aerobrake that meets

performance requirements.

Typically in the past, a basic structural analysis

configuration was defined by the experience and en-

gineering judgment of the designer. Within the time

constraints of the study, simple design variable (pa-

rameter) trades would be performed. In these trades,

analyses are performed when the value of one design
variable (a parameter level) is altered while all other

design variables are left constant. This approach has

been necessary when considering the time constraints

and the lack of a strong physical definition of a con-

cept at the time of conceptual-preliminary level de-

sign. In addition, this approach does not identify
the possible interaction of the parameters. Varying

several design parameters simultaneously may have

interactive effects on the design objective, which can



affecttile optimumsolution.Whentheeffectofone
parameterdependson the levelof another,an in-
teractionis saidto exist. The studyof parameter
interactionsis importantin orderto determinethe
optimumcase.A full factorialapproach,whereall
combinationsof all parametersareanalyzed,could
find the near-optimumconfiguration,but it would
betootimeconsuming.

The Taguchimethodologyoffersan attractive
alternativeby providinga systematic,economical
methodfor reducingthe numberof analysiscon-
figurations. Usingorthogonalarrays,the Taguehi
methodexploresthe entiredesignspacethrougha
smallnumberof experimentsin orderto determine
all the parametereffectsand severalof the inter-
actions.Thesedataarethenusedtopredicttheopti-
mumcombinationofthedesignparametersthat will
minimizethe objectivefunctionandsatisfyall the
constraints.In additionto locatinganear-minimum
objectivefunction,theTaguchimethodprovidesin-
formationon parametertrends, therebyenabling
a robustdesign. Furthermore,both discreteand
continuousvariablescanbestudied. TheTaguchi
methodemploysthe useof orthogonalarraysbased
oil the design of experiments theory. The design of

experiments theory was developed in Great Britain

in the 1940's for the improvement of crop production

(ref. 5). Taguchi institutionalized the approach by

creating a handbook of standard orthogonal arrays
(ref. 6). The Taguchi method was then utilized in

Japan to revolutionize the consumer product mar-

ket, specifically, electronics (ref. 7). This approach

has been used in other industries, but it has just re-

cently been utilized for aerospace design (ref. 8).

hilly stressed structural analysis techniques and
a Taguchi design methodology are utilized in this

study to identify a lunar minimum-weight aerobrake

structural design and the associated design param-

eter sensitivities. This study focuses on structural

design, although the total aerobrakc design consid-
ers iterative input from other disciplines such as

aerodynamics, performance, weight, packaging, and
heating. The twofold objcctive of this study is

to obtain a minimum-weight acrobrake structural

configuration and demonstrate the applicability of
the Taguchi method for aerospace vehicle structural

design.

2. Inputs and Assumptions

Prior to this structural design and analysis study,

aerodynamic analyses and a configuration layout

study were performed in order to establish perfor-

mance requirements and determine viable shapes for

an aerobrake similar to that in figure 2(a). Hundreds

of variations of four basic shapes were tested includ-

ing spheroids, ellipsoids, hyperboloids, and sphere-

cone configurations; they were described by several

geometric parameters inchlding effective nose radius,

cone angle, diameter-depth ratio, etc. Configuration

layout studies addressing fit within the wake flow

and center-of-gravity placement resulted in a baseline

aerobrake diameter of 50 ft and a 40 000-1b cylindrical
payload with a diameter of 25 ft. The aerodynamic

analyses of the selected shapes were performed at

flight conditions having a Mach number of 20 and

an altitude of 200 000 ft in order to match the flight-
entry corridor for aerobraking trajectories that were

constrained to an inertial loading of 5g acceleration

(where lg _ 32.174 ft/sec2).

The inertial and aerodynamic loads incurred dur-

ing the mission are utilized as the design loading
conditions. Ground operations, maintenance, han-

dling, and transportation have yet to be defined for

the aerobrake vehicle, and the loads incurred during
manufacturing, transportation, and maintenance are
reserved for further studies.

In order to perform a timely study, only those pa-

rameters envisioned as having the greatest effect on

the aerobrake weight were selected for analysis. The
levels for these parameters were selected based on

preliminary study results or engineering judgment. A
description of the parameters and their levels follows.

A skin/stringer structural configuration is chosen

to represent the aerobrake (fig. 4). Honeycomb sand-

wich panels with a frame network, isogrid panels,

Radial

fra_

Figure 4. Concentric ring frames (rings), radial frames
(frames), and honeycomb core thickness.
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andamembraneskinwith a complextrussstructure
arrangementare all alternativcs. The honeycomb
sandwichwith aframenetworkwasselectedfor this
conceptual-preliminarylevelassessmentbasedonits
pastperformance(ref.9). Thelevelsfor honeycomb
depthwerebasedon thepreliminarytestsdescribed
in section4of thisstudy.

Stiffenersfor the aerobrakeincluderadialframes
andconcentric ring frames. Stiffener directions were
selected to match the major'load paths of the vehicle

(}loop and radial). These frames were modeled as
I-beams with a web height of 6 in., a cap width of

1 in., and a cap and web thickness of 1/10 in.

The launch configuration of the acrobrake vehicle

is dependent upon the packaging constraints of the
Earth-to-orbit tmmch vehicle. Little definition exists

of the on-orbit assembly method and mechanisms for

acrobrakes. Thus, the joint mass for this concept is
not addressed because of the lack of definition and

data in this area.

The three materials selected for the aerobrake

structure are aluminum 2219 (A1), aluminum-lithium

(A1-Li), and carbon-carbon (C-C). These three ma-
terials represent threc different levels of' tectmol-

ogy (i.e., conventional, near-term, and advanced,

respectively).

Aerobrakes must be capable of surviving the high-
temperature environments occurring during atmo-

spheric reentry. Thermal analysis of a 45-ft-diameter
sphere-cone aerobrake with a 10-ft-radius nose cone

and a 20 ° cone sweep angle indicates a peak surfacc

temperature of 3200°F (fig. 5). The temperature per-

formance (fig. 6) of aluminum and aluminum-lithium
structures dictates a need for a thermal protection

system (TPS). (Sec ref. 10.)
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Figure 5. Heating of sphere-cone aerobrake for hmar re-
turn. Aerobrake had 45-ft diameter, 10-ft-radius nose,

and 20° cone sweep angle.
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Figure 6. Temperature performance of materials.

The additional weight of the TPS will be added

to the final structural weight of the aluminum-based
configurations with the result that a reasonable com-

parison can be made with the weight of the carbon-

carbon configuration which needs no additional TPS.

The selected TPS must satisfy on-orbit installation,

repair, refurbishment, and inspection requirements;
and thus the best insulating requirements or low-

est mass options may not be met. Yet, because

no specifications of these on-orbit requirements ex-

ist at present, the TPS will be chosen for analyti-
cal purposes on the basis of its thermal and mass
characteristics.

A survey of various TPS systems indicates that an
aluminum-enhanced thermal barrier TPS with an av-

erage area mass density of 1.75 lb/ft 2 and a uniform

thickness of 3/8 in. may be assumed to fulfill the tem-

perature and thermal gradient considerations shown
in figure 5. The mass density includes the weight of

an aluminum carrier plate, a Du Pont Nomex pad,

and a room-temperature vulcanized compound. The

tile exterior is coated with alumina (aluminum ox-

ide), a 1/10-in. thickness of alumina felt, and a pro-
tective coating of carbon silicon carbide with carbon
fibers.

As a result of these assumptions, the six pa-

rameters chosen to represent the design variables of

the aerobrake configuration include shape, diameter-

depth ratio, honeycomb core thickness, number of
radial frames, number of concentric ring frames, and

material (table I).

3. Design and Analysis Methodology

3.1. Study Matrix

If the six design variables are each defined at three

levels, a full study matrix for all possible combina-
tions would require 36, or 729, analysis cases. A sys-

tematic approach to selecting an appropriate subset
of these is needed.
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Table I. Design Parameters and Levels

Parameter
level

]Honeycomb core
thickness, in.

Number of
radial frames

Number Of
ring frames Material Shape

1 2.75 5 4 A1 E 4

2 3.00 10 7 AI-Li S 6

3 3.25 20 10 C-C S-C 8

Diameter-depth
(D-D) raho

Frames

Rings

Sphere-cone (S-C)

Spheroid (S)

Ellipsoid (E)

-4}D-Dra,,o

The Taguchi method uses orthogonal arrays from

the design of experiments theory to study the pa-

rameter space with a significantly small number of
experiments. Taguchi has tabulated 18 standard or-

thogonal arrays. In many cases, one of these arrays
can be used directly or can be modified to fit a spe-

cific project. To seIect the appropriate orthogonal

array to fit a specific case study, we need to count
the total degrees of fi'eedom to find the minimum

number of experiments that must be performed to
reach a near-optimum parameter set.

One degree of freedom is associated with the over-

all mean regardless of the number of design parame-

ters. A three-level parameter counts for two degrees
of freedom. The degrees of freedom associated with

interaction between two parameters is given by the
product of the degrees of freedom for each of the two

parameters. Therefore, we have 12 degrees of free-

dom because of the 6 parameters and 12 degrees of

freedom because of parameter interactions, resulting

in a total of 24. In order for an array to be a viable
choice, the number of rows must at least be equal to

the degrees of freedom required for the case study.

Hence, an L27 array (having 27 rows) was selected

(table II). This array has 26 degrees of freedom,

and it can handle 7 parameters at 3 levels and
3 interactions between 2 parameters. One column

is necessary to represent each parameter, and two

columns for each parameter interaction. Since only
6 parameters and 3 interactions occur, 12 of the

13 available columns will be used. Orthogonality is

not lost by keeping one or more columns of an array

empty. For this study, the utilization of an L27 array

reduced the number of experimental configurations

from 729 (required by a full factorial study) to 27.

The Taguchi design methodology for this study

employs the following seven basic steps (refs. 11

and 12):

I. Identify the design parameters and their alter-
native levels.

2. Define possible interactions between these

parameters.

3. Select an appropriate Taguchi orthogonal
array.

4. Determine the parameter arrangement.

5. Conduct tim matrix experiment (by using the

appropriate finite element analysis).

6. Create response tables and graphs, and ana-
lyze the data.

7. Determine the optimum levels for the design

parameters, and then verify.

In step 1, selection of the design parameters
and their corresponding levels determines the de-

sign space. This is an important step. The Taguchi
method will determine the combination of the param-

eter levels that gives the near-optimum performance

(i.e., low weight) and the sensitivity of the results to

the parameters within the given design space.
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In step 2, possible interactions bctween the de-

sign variables are selected for investigation based on
experience. The Taguchi method can determine the

existence of these interactions. If interactions are not

correctly identified at this stage, the study will indi-
cate this deficiency with inconsistent results at the

verification stage. If this occurs, the design process
must bc restarted with new interactions selected.

In step 3, an appropriate Taguchi matrix is se-
lccted. Standard Taguchi matrices exist in refcr-

cnce handbooks (ref. 7). The selected matrix must

accommodate the parameters, their levels, and the
interactions. The matrix must contain at least

one column for each parameter and each inter-
action. The number of levels will determine the num-
ber of rows in a matrix.

In step 4, the parameter arrangement in the ma-

trix is determined. The arrangement is dependent
upon the chosen parameter interactions. For more

details on parameter arrangement, see reference 13.

In step 5, the matrix experiments are conducted.

The experimental method is dependent on the nature

of each problem. For this study, the experimental

procedure is conducted by performing a finite ele-
ment analysis of each experimental configuration. A

finite element structural analysis yields estimates of
stress and resultant loads on the structures under

external loading conditions. This procedure is de-
scribed in section 3.2.

In step 6, the result for each experiment is listed

and an average value is calculated for each expcri-

ment having a specified parameter level. A compar-
ison of the average results for onc level with those

of tile other levels within a parameter indicates the

sensitivity due to that specific parameter. The diffcr-

ence between the greatest and least average values for
each parameter gives an indication of the relativc de-

gree of sensitivity when compared with the difference

for other parameters. For paramctcrs whose interac-

tions are not studied, the optimum level is identified

by the lowest averaged result. Analysis of interact-

ing parameter results is more complex, and thus it is

reserved for a later explanation.

In step 7, the optimum levels for the parameters
arc chosen and verification tests are made. Further

experimentation can be attempted if the sensitivity
graphs indicate that any further optimization is pos-

sible outside the original design space.

3.2. Methodology of Analysis

A finite element modeling and analysis technique
is utilized to determine the integrity of each aero-

brakc structural arrangement. Of primary concern
is the ability of each candidate structure to resist

local mechanical failure modes and global buckling
(eigcnsolution) when subjected to aerodynamic and

inertial loading present during tile mission. Thus,

each configuration analysis includes geometry mod-

eling, finite element modeling, aerodynamic pressure
distribution, inertial loads application, finite clement

analysis, structural element sizing, structural ele-

ment weight summation, and postprocessing results
evahmtion (fig. 7).

• 3-D solid-geometry modeling

• Finite element modeler

• Static load case definition

• Physical & material properties

• Finite element solver
• Static solution
• Global buckling solution

• Structural element sizer

• Local failure criteria
• Buckling
• Yield
• Ultimate
• Etc.

SMART POST

_¢ ____aerAPdAns_micEAL

I E_ieimngnt I--

+
Fig_lre 7. Structural analysis procedure.



Thegeometryconceptsaremodelcdthroughthe
useof the SolidModelingAerospaceResearchTool
(SMART)system. (Seeref. 14.) The modelsare
storedasbicubicpatchdatausedin both thefinite
elementandaerodynamicanalyses.

The structural finite elementmodelis derived
by discretizingthe SMART-generatedexternalsur-
facegeometry.Internalstructuralarrangements,or
frames,are incorporatedwithin the computerpro-
gramPATRANfor finite elementmodeling. (See
ref. 15.) Thcsestructuresareincorporatedinto the
vehicleto withstandthe externalloadingandpro-
videsafeloadingpaths,thusmakingthevehicleca-
pableof completingthe missionwithout structural
failure. Thedesiredsectionandmaterialproperties
ofthestructurearcalsoincludedin thefiniteclement
modelof tile vehicleat thispoint.

Typically,theexternalgeomctryof a candidate
configurationisdeterminedby tile resultsof aerody-
namicstudiesaimedat achievingnecessaryor opti-
mumaerodynamiccharacteristics.Theaerodynamic
analysisisperformedutilizingamodifiedNewtonian
techniqueincludedin theAerodynamicPreliminary
AnalysisSystem(APAS)code.(Sccrefs.16and17.)
Aerodynamicsurfacepressuresare calculatedand
mappedfromtheaerodynamicmodelontothestruc-
tural finiteelementmodel.

Theaerodynamicloadscombinewith the inertial
loadscalculatedthrougha performanceanalysisto
simulatctile criticalmissionloadingconditions.The
inertial accclerationvectorsare calculatedby uti-
lizing Programto OptimizeSimulatedTrajectories
(POST).(Seeref. 18.)With the additionof theex-
ternalloading,thefiniteelementstructuralmodelis
completeandisreadyfor analysis.

Finiteelementanalysis(FEA)isperformedonthe
finiteelementmodelin orderto determinetheresult-
ingloadsdueto themissionloadingconditions.FEA
is performedutilizingtheEngineeringAnalysisLan-
guage(EAL).(Seeref.19.)TheFEAproducesresul-
tant structuralloadsfor eachfiniteelement.These
resultantloadsareindicativeof the load paths and

integrity of the vehicle structure and may indicate

areas of the vehicle that arc loaded beyond the limits
of the construction material.

These loads are used as input to a structural

sizing routine in order to determine the changes

necessary in scction properties (i.e., plate thickness

and bar diameter) to meet failure criteria. Each

structural element (bars, planar beams, and plate
elements) is sized within the EZDESIT computer

program to withstand the mission loading conditions

(fig. 8). (See ref. 20.)

8

Panel stress

resultants Panel weight

and dimensions

Ny

Sizing criteria
• Minimum gauge

• Buckling

• Compressive yield

• Tensile yield strength

• Ultimate strength

Figure 8. EZDESIT finite-element-sizing methodology for flat plate.
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The weights of all the structural finite elements

are added to obtain the structural weight of the

aerobrake. The geometric sizing of the structural
elements alters the stiffness properties of the aero-

brake finite element model. Thus, the finite element

analysis and structural element sizing are iterated

until an aerobrake weight convergence is achieved.

A convergence occurs when the difference between

the structural weight of two consecutive iterations is

negligible. A converged solution typically takes three
iterations.

The results of the sizing can be reviewed in two
manners. An interactive session of the EZDESIT

program permits the designer to review the data in
tabular form. The weight of the aerobrake struc-

ture is calculated and displayed by component, load

case, failure mode, and clement type. In the sec-

ond method, the EZDESIT results are read into

PATRAN, a finite element preprocessor and post-
processor, and the structural element results are dis-

played graphically on the model. These include re-

sulting loads, dominant load case, failure modes, and

unit weights. Highly loaded areas may indicate a

need for an alternative structural design. Resultant
loads are reviewed by the structural designer, and

if necessary, changes to the structural arrangement

are made by altering the finite element model and
reanalyzing the structure.

Each finite element model is checked for global
buckling. The eigensolver routine in EAL is utilized

to determine the percent of static loads necessary to

obtain a globally buckled model. When the eigen-

value is less than 1, the loads are too great and global

buckling occurs. Thus, an optimum configuration
would attain a global buckling eigenvalue of 1.

4. Preliminary Results

A few aerobrake concepts were analyzed prior
to establishing the design matrix to determine a

reasonable range of parameter values. These pre-
liminary results show that the relationship between

honeycomb thickness variation and global buckling

is sensitive (fig. 9). This analysis was conducted for

a 37.5-ft-diameter aerobrake with a diameter-depth
ratio of 1.5 and an eccentricity of 0.5. The aero-

brake model assumed a honeycomb construction of

aluminum 2219 with 4 concentric ring frames, 10 ra-

dial frames, and a factor of safety of 1.5. According
to figure 9, a honeycomb thickness of at least 2.64 in.

is necessary to maintain structural integrity. Based

on these results, a minimum honeycomb thickness of

2.75 in. was selected. Results indicated that global

buckling was the primary failure criterion. Local-
ized phenomena such as yield and ultimate stresses

were less important. The number of concentric ring

frames and radial frames along with the honeycomb

thickness has an effect on global buckling. Thus, cm-
phasis was placcd on these variablcs in an attempt

to alleviate the global buckling phenomenon.

5.00
.=2

4.00

•_ 3.00

ca

,_ 2.00

8
1.oo

I I I I

IO0 200 300 400
Static load until global buckling, percent

Figure 9. Honeycomb core thickness of elliptical aerobrake ms

flmction of global buckling. Aerobrake had diameter of

37.5 ft, eccentricity of 0.5, depth of 25 ft, and was made

of aluminum 2219.

5. Design Matrix

A dcsign space for Taguchi optimization is de-

fined by selecting design parameters and setting
their levels. The design parameters and their lev-

els are chosen based upon experience and knowledge.
Inappropriate choices of parameter levels will incur

the need for further analyses. For this study, the se-

lection process was impacted by aerodynamic, pack-
aging, structural, and material concerns. A descrip-

tion of the decision process follows.

As mentioned previously, hundreds of acrobrake

shapes were analyzed to determine their aerodynamic

performance. The number of candidate configura-
tions was reduced on the basis of their packaging

efficiencies constrained by wake turning angle and

aerodynamic performance requirements. Still, many
candidate shapes remained viable. No further aero-

dynamic or performance criteria were applied to re-
duce the number of candidates. The selection from

these viable candidates then was to be based on

structural and weight considerations. Thus, the

structural analysis was used as a design tool for

the acrobrake selection. So many configurations re-

mained that an orderly and efficient analysis method

was necessary.

Based on the Taguchi method, the number of

analysis configurations was reduced. Having the geo-
metric characteristics of the aerobrakes chosen for

analysis to represent the range of viable configura-

tions was desirable. The entire design space was



representedwith nineconfigurationsthat consisted
of permutationsof threeshapesandthreediameter-
depthratiosvaryingfrom4 to 8 (figs. 10-12).The
threeshapeswereellipsoid,spheroid,and sphere-
cone.Theellipsoidalaerobrakeshaveaneccentric-
ity of 0.5(fig. 10). Thesphere-coneaerobrakesare
acompositionof aspheroidalnosefairedintoacone
frustum.Thesphere-coneaerobrakcshaveaneffec-
tive noseradiusof 24 ft and a coneanglevarying
from60° to 75° (fig. 11). The spheroidal aerobrakes
have an effective nose radius varying from 32 to 64 ft

(fig. 12).

Depth --

_ ratio ......

ctive nose

dius, ft...

8

110

6

83

4

63

Figure 10. Ellipsoidal aerobrakcs. Eccentricity = 0.5.
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Fignlre 11. Sphere-cone aerobrakes.

4
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60
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\
Diameter

2
D-D ratio ...........

Nose radius, ft...

8 6 4

64 48 32

Fignlre 12. Spherical aerobrakes.

The material selection is based on the projected

technology availability. Three materials were cho-

sen, each to represent a different level of technol-
ogy. Aluminum was chosen to represent a sta{_e-of-
the-art material. Aluminum-lithium was chosen to

represent a near-term technology material. Carbon-

carbon was selected to represent an advanced tech-

nology material.

Shape, diameter-depth ratio, and material are

aerodynamic, packaging, and technology parameters,

respectively, that impact the structural definition

and weight of the aerobrake. The structural param-
eters include honeycomb thickness, number of radial

frames, and number of ring frames. The design com-

posed of these parameters will dictate the structural

integrity of the models.

Based on the preliminary results discussed in sec-

tion 4, the honeycomb-thickness levels chosen were

2.75, 3.00, and 3.25 in.

The minimum number of radial frames was based

on the number of payload-to-aerobrake attachment

points, which was assumed to be five. The five at-

tachment points are placed a radial distance of 25 ft
from the center and circumferentially at every 72 °

This arrangement matches the assumed cylindrical

payload dimensions and design. To ensure consis-

tency across the finite element models, all are con-
structed with the same number of radial and circular

surface elements. Therefore, to increase the number

of evenly distributed radial frames while maintain-
ing the five aerobrake-payioad interfaces, the frames
must be increased twofold. The number of radial

frames at level 2 is 10 and at level 3 is 20.

The number of concentric ring frames for testing
is 4, 7, and 10. This range of values gives a sparse,



medium, and dense distribution, respectively, of con-

ccntric ring frames.

The three pairs of interactions chosen for study

involved all combinations of material, shape, and

honeycomb thickness.

Given the six design parameters, their three inter-

actions, and three levels, an L27 Taguchi matrix was

selected (table II). Parameters require 1 column and

interactions require 2, with the result that only 12 of

the 13 columns associated with an L27 were needed.

The arrangement of the parameters and their levels

is represented generically by the letters and numbers.

Table III shows the matrix combinations forming the

actual experiments. (Interactions are not shown.)

Each row represents an experiment, i.e., one combi-

nation of parameter levels.

6. Results

The analysis results of the 27 experiments are

shown in table IV. These results vary from a max-

imum of 10144 lb to a minimum of 4351 lb.

The experiments include aerobrakes with aluminum,

aluminum-lithium, and carbon-carbon structures.

To compare the weights of these various material

concepts fairly, a thermal protection system (TPS)

weight is added to the aluminum and aluminum-

lithium concepts but not to the carbon-carbon con-

cept because this material can tolerate extremely

high temperatures and operates as a hot structure.

The TPS weight is calculated as the product of

the surface area and the prior-established TPS unit

weight.

Table III. Experiment Matrix

Experiment

number

10
11

12

13

14

15

16

17

18

19
20

21

22

23
24

25

26

27

O

Shape

E

E

E

E

E

E

E
E

E

S
S

S

S

S
S

S

S

S

S-C

S-C

S-C

S-C
S-C

S-C

S-C

S-C

S-C

Parameter level values for each

ex)eriment at columns

o o o o o
Honeycomb Number Numi;e_-- ............ A_robrai_e -

core

thickness, in.

2.75

2.75

2.75

3.00

3.00

3.00

3.25
3.25

3.25

2.75
2.75

2.75

3.00

3.00

3.00

3.25

3.25

3.25

2.75

2.75

2.75

3.00

3.00

3.00

3.25

3.25

3.25

Material

A1

A1-Li
C-C

A1

AI-Li

C-C

A1

AI-Li

C-C

AI
A1-Li

C-C

Al
A1-Li

C-C

A1

Al-Li

C-C

A1

A1-Li

C-C

A1
AI-Li

C-C

A1

AI-Li

C-C

of radial

frames

5

10

20

10

20

5

20
5

10

10
20

5

20

5
10

5

10

20

2O

5

10

5

10

20

10

20

5

of ring

frames

4

7
10

7

10

4

l0
4

7

10
4

7

4

7
10

7

10
4

7

10

4

10
4

7

4

7

10

D-D ratio

weight,

lb

Results

Aerobrake

weight + TPS,

lb

Global

buckling

eigenvalue

11



TableIV. ExperimentMatrixWithResults

Experiment
numl)er

1
2
3

10
11
12

13
1,1
15

16
17
18

19
20
21

22
23
24

25
26
27

@

Shape

E

E

E

E

E

E

E
E

E

S

S
S

S

S
S

S

S

S

S-C

S-C

S-C

S-C
S-C

S-C

S-C

S-C

S-C

Parameter level values for each

ex)eriment at columns--

@
Honeycomb

core

thickness, in.

2.75

2.75

2.75

3.00
3.00

3.00

3.25

3.25
3.25

2.75

2.75
2.75

3.00

3.00
3.00

3.25

3.25

3.25

2.75

2.75

2.75

3.00
3.00

3.00

3.25

3.25
3.25

© ®
Number

of radial

Material frames

A1 5
A1-Li 10

C-C 2O

A1 10

A1-Li 20

C-C 5

A1 20

AI-Li 5

C-C 10

AI 10
AI-Li 20

C-C 5

Al 20

AI-Li 5

C-C 10

AI 5

AI-Li 10

C-C 20

A1 20

A1-Li 5

C-C 10

A1 5

At-Li 10

C-C 20

A1 l0
A1-Li 20

C-C 5

®
Number

of ring

frames

4

7

I0

7

I0
4

lO

4

7

I0

4

7

4

7

i0

7

I0
4

7
lO

4

I0
4

7

,i

7

I0

®

D-D ratio

Aerobrake

weight,

lb

5 110

4 690

9 173

5 123
6 470

7 842

6147

4 463

7913

5 330

,t 951

5 145

4 955

4 756

6 927

5 453

5 370 '

10 14,t

5 190
4 472

7 224

5 2,17

4351
9 927

4 856

5 509

8662

Results

Aerobrakc

weight + TPS,

lb

9 838

8 639

9 173

8 866

11 198

7 842

i 0 096

11 656
7913

9 241

9 274
5 145

8 824

8 667
6 927

9 775

9 239

10 144

8 921

8 105

7 224

9 258
8 082

9 927

8 489

9 520

8 662

Global

buckling

eigenvalue

1.05

.56

2.23

.,12

.82

5.41

.75

.40

4.75

.85

.54
2.48

.90

.81
2.42

.63

1.12

5.66

.44

.25

2.58

.55

.33

1.97

.28

.58
2.57

Table V. Response Table

E

_E

Parameter

level

1

2

3

Sensitivity

Honeycomb

8396

8844

9500

1104

Frames

8772

8291

9676

!1385J

12

Rings

9042

8597

9100

Weight, lb, for -

Material Shape D-D ratio

503

9257

9376

8107

®

9469

8582

8688

887

8992

8384

9363

979

m



The aerobrakc weights thcn vary from a maxi-
mum of 11656 lb to a minimum of 5145 lb. Global

buckling eigenvalues vary from 5.66 to 0.25. These

weights and global buckling values are used to derive

the effects of each parameter on thcsc critical val-

ues. An average weight is calculated for the 9 out of
27 experiments that exist at level 1 for a particular

parameter. This step is repeated for levels 2 and 3 of

that parameter. These averages are calculated for all

the parameters and are listed in the response table

(table V). The relative sensitivity of each parame-

ter on the weight is determined by subtracting the
smallest value from the largest value in each param-
eter column. The mlmber of frames and the material

selection show the highcst sensitivity (shown by the

circled values in table V) because the greatest effect
on weight is realized by varying these parameters.

The optimum level for the thrcc noninteracting

parameters (frames, rings, and diameter-depth ra-

tio) can be selected by choosing tile level within that

parameter column with the lowest value for weight.

Frames, rings, and diameter-depth ratio give opti-

mum results at level 2 (that is, 7 frames, 10 rings,
and a diameter-depth ratio of 6). Too many rings

or frames add unnecessary weight to the structure,

whereas a small number of rings or frames reduces
the overall stiffness of the structure and allows for

global buckling. The weights of the rings and frames

exhibit a "bucket" trend when plotted against design

level (fig. 13).

The diameter-depth parameter also exhibits a

bucket trend when plotted against weight. This

trend may be explained by two phenomena. As the

diameter-depth parameter is reduced, the amount
of surface area is reduced, thereby reducing weight.

Additionally, as the diameter-depth parameter is

reduced, the effect of the loading is increased because

of the flattened shape which tends to increase weight.
The balance between these effects occurs when the

diameter-depth ratio is 6.

Interacting parameters require an alternate
method of determining the optimum level. For the

three parameters for which interactions were exam-

ined (honeycomb thickness, material, and shape), the

weight at level 1 of parameter 1 is plotted against

all the levels of parameter 2 (fig. 14). A line is

constructed connecting these data points. This is
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Honeycomb core
thickness, in.
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Figure 13. Response graphs.
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repeatedonthesamegraphfor levels2and3 of pa-
rameter1. If theselinesarenonparallel,interactions
occur;andif the linescross,stronginteractionsoc-
cur between the parameters at these values. These

plots verify that the strong interactions expected do
indeed exist.

The parameter levels for the lowest weight combi-

nation for each graph are chosen as optimum levels.

The interaction graph showing honeycomb thickness

plotted against material displays an optimum com-

bination of honeycomb thickness at level 1 (2.75 in.)

and a material level of 3 (carbon-carbon). The in-
teraction graph showing honeycomb thickness plot-

ted against shape displays an optinmm combination

of honeycomb thickness at level 1 (2.75 in.) and a

shape level of 2 (spheroid). The interaction graph of
material plotted against shape displays an optimum

combination of material at level 3 (carbon-carbon)

and a shape level of 2 (spheroid).

The optimum parameter levels for a minimum

weight configuration of the aerobrake structure arc
circled in table VI. This combination of parameter

levels represents the optimum combination within

the prescribed design space. A review of the sen-

sitivity plots for weight (fig. 15) and global buck-

ling (fig. 16) shows that additional weight benefits
may be realized by further reducing the honeycomb

thickness. The honeycomb core thickness cannot be

reduced after the global buckling eigenvalue of 1.0 is

reached (fig. 16). The results in figure 16 are for
the Taguchi matrix experiments prior to selecting

the optimum configuration. Therefore, the aerobrake

was analyzed at four reduced honeycomb thicknesses

while maintaining the optimum levels for all other

parameters. (See table VII.) As the honeycomb core
thickness is reduced, the aerobrake weight is reduced

and global buckling is being approached. A final

honeycomb core thickness of 2.00 in. still satisfied

9600 --

9200 --

88OO

84OO

soOO- I l I
2.75 3.00 3.25

Honeycomb core thickness, in.

Figure 15. "Weight sensitivity of honeycomb core thickness.

2.0

1.5

'U
ea_

._ 1.0
.-v
¢,9

.5
¢D

m

_1 I I
2.75 3.00 3.25

Honeycomb core thickness, in.

Figure 16. Global buckling sensitivity of honeycomb core
thickness.

Table VI. Optimum Parameter Levels for Minimum Weight Configuration

m

Parameter

level

1

2

3

Honeycomb core
thickness, in.

@
3.00

3.25

Number of

radial frames

5

®
2O

Number of

ring frames

4

©
10

Material

A1

A1-Li

®

Shape

E

©
S-C

D-D ratio

4

©

14
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Table VII. Honeycomb Thickness Optimization

Honeycomb core
thickness, in.

2.60
2.40

2.20

2.00

Weight, lb
5108

4971

4817

4653

Global

buckling eigenvalue
2.35

2.13

1.91
1.70

the global buckling eigensolution and resulted in a

final weight of 4653 lb. This final weight represents a

44-percent savings over ttle average weight (8367 lb)
of all the feasible experimental matrix cases (those

with a global buckling eigenvalue over 1.0).

o 7. Concluding Remarks and

Recommendations

The following concluding remarks are based on
the initial assumptions from other disciplines and the

results of the design and analysis study.

: The Taguehi design method and the finite element

analysis method wcrc successful in identifying which
design parameters have the most influence on the

weight and global buckling. The acrobrake weight

_" and global buckling are sensitive to all the param-
eters, but particularly to the honeycomb thickness,

the number of radial frames, and the material.

Utilization of the Taguchi method significantly

reduced the number of experimental configurations,

Without the utilization of the Taguchi design method

and the L27 orthogonal matrix, 729 experiments
would have been necessary to find the lightest weight

combination instead of the 27 made in this study.
The interactions and trends of the parameters could

not have been captured without the use of the

Taguchi method within the time constraints of the

study.

Combining the Taguchi design method and the

finite element analysis method provides an effective

approach for conceptual-preliminary level aerobrake
optimization studies. The average aerobrake weight

of all the feasible experiments is 8367 lb, and the

maximum feasible weight is 10 144 lb. The optimized

structural weight of the aerobrake is 4653 lb, which is

a weight savings of 3714 lb over the average aerobrake
weight.

Global buckling is a critical failure criterion for

hmar aerobrakes. The preliminary study showed

that although tile acrobrake structure could be sized

to withstand the local failure criteria, the global

buckling criterion could not always be satisfied.

The optimum level of the design parameters for

minimizing weight is 10 frames, 7 rings, a 2.40-in.
honeycomb core thickncss, carbon-carbon material,

spheroidal shape, and a diameter-depth ratio of 6.

Interactions occur between tile honeycomb thick-

ness, the shape, and the material. Changes in any of

these parameters affect the impact of the remaining

parameters.

Future structural design studies of lunar aero-
brakes should include further considerations. Cost

studies should be included since optimum weight con-

figurations may not be synonymous with optimum
cost. A thermal analysis of thc aerobrakc structure

and its thermal protection system should be included

to lend more detail to the weight estimations. Assem-

bly and operational issues should be considered be-

cause they can have a dramatic impact on the weight

and life-cycle cost of the configuration.

NASA Langley Research Center
Hampton, VA 23681-0001
September 29, 1992
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